
Conformal Field Theory and Gravity
Solutions to Problem Set 8 Fall 2024

1. Radial Quantization of the Free Scalar

(a) Let’s introduce some notation. Let

ds2Sd−1 = hij(θ
k)dθidθj

be the metric of the unit sphere Sd−1. For instance, in d = 2, 3 we have

ds2S1 = dφ2, ds2S2 = dθ2 + sin2(θ)dφ2.

The corresponding volume element is
√
h
∏

i dθ
i ≡ dΩ, to connect with the notation

from the exercise. The metric in radial coordinates (r, θi) resp. cylinder coordinates
(σ, θi) coordinates reads

ds2 = dr2 + r2ds2Sd−1 = e2σ
[
dσ2 + ds2Sd−1

]
since dr = d(eσ) = eσdσ. In particular, in the (σ, θi) coordinates we have √

g =

exp(dσ)
√
h so the volume element is edσdσdΩ.

After throwing away a boundary term, the action is given by

S[φ] =

∫
ddx

1

2
(−φ�φ), � = ∂µ∂

µ

working in Cartesian coordinates xµ. In a general coordinate system, the Laplacian
acting on a general function f is instead

�f =
1
√
g
∂µ(

√
ggµν∂νf)

Evaluating the Laplacian in cylinder coordinates (σ, θi) and plugging it into the
above relation will yield the correct answer. Nevertheless, we will use a different
strategy. The Euclidean action can be rewritten in a purely covariant form as

SE =

∫
ddx

1

2
(∂µφ)

2 =
1

2

∫
ddx

√
ggµν∂µφ∂νφ

We can now just use our change of variables as

SE =
1

2

∫
dσ

∫
dd−1θ

√
he(d−2)σ

[
(∂σφ)

2 + hij∂iφ∂jφ
]

=
1

2

∫
dσdΩe(d−2)σ

[
(∂σφ)

2 + hij∂iφ∂jφ
]
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According to the exercise, we should define a field φ = exp
(
−1

2
(d− 2)σ

)
χ. With

this definition, we have

∂σφ =
2− d

2
e−

d−2
2

σχ+ e−
d−2
2

σ∂σχ

Plugging that into the action and neglecting total derivatives yields the answer from
the exercise.
Using the other strategy, we obtain

−edσφ�φ = χDχ, D = − ∂2

∂σ2
+

(
d− 2

2

)2

−�Sd−1 .

Therefore

S[φ] =
1

2

∫
dσdΩ

[
(∂σχ)

2 − χ�Sd−1χ+

(
d− 2

2

)2

χ2

]
.

If we write −χ�Sd−1χ = ∂iχ∂
iχ, we recover the result from the exercise.

(b) Solutions of the Equation Dχ = 0

Suppose that Y (θi) is an eigenfunction of the Laplacian �Sd−1 in d dimensions, with
eigenvalue −γ. If we take the Ansatz

χ(σ, θi) = e±ωσY (θi),

then

Dχ =

[
−ω2 +

(
d− 2

2

)2

+ γ

]
χ =⇒ ω =

√
γ +

(
d− 2

2

)2

.

If you have studied the theory of spherical harmonics, you may know that in d
dimensions, the spherical harmonics of Sd−1 have eigenvalues γ = `(` + d − 2), so
the possible values of ω are

ω` =

√
`(`+ d− 2) +

(
d− 2

2

)2

= `+
d− 2

2
.

In particular, for d = 3 the allowed energies are ±ω` = ±(`+ 1
2
).

From now on, let us fix d = 3. The most general solution is a sum of all solutions
of the form (22), namely

χ(σ, θ, φ) =
∞∑
`=0

∑̀
m=−`

(
b+`,me

ω`σ + b−`,me
−ω`σ

)
Y`,m(θ, φ),

where b±`,m are some operators acting on Hilbert space. The reality condition —
using Y ∗

`,m = (−1)mY`,−m — is

χ(σ, θi) = χ(−σ, θi)† =
∑
`,m

(−1)m
[
(b+`,m)

†e−ω`σ + (b−`,m)
†eω`σ

]
Y`,−m(θ, φ)
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=
∑
`,m

[
(−1)m(b−`,−m)

†eω`σ + (−1)m(b+`,−m)
†e−ω`σ

]
Y`,m(θ, φ)

(relabeling m → −m in passing from the first to the second line), so by imposing
that this agrees with (25) for all σ and θ, φ, we learn that

b+`,m = (−1)m(b−`,−m)
†.

It is more natural to redefine the modes as

a+`,m =
√
2ω`b

+
`,m, a−`,m =

√
2ω`(−1)mb−`,−m

such that
a+`,m = (a−`,m)

†.

This also leads to a more standard expression for the field χ, namely

χ(σ, θ, φ) =
∞∑
`=0

∑̀
m=−`

1√
2ω`

[
a+`,me

ω`σY`,m(θ, φ) + a−`,me
−ω`σY`,m(θ, φ)

∗]
which is now manifestly hermitian.

(c) Computation of the Hamiltonian H

We are left to compute H, by integrating

H =
1

2

∫
S2

dΩ

[
−(∂σχ)

2 + χ

(
−�S2 +

1

4
(d− 2)2

)
χ

]
.

For the first term, notice that

∂σχ =
∞∑
`=0

∑̀
m=−`

√
ω`

2

[
a+`,me

ω`σY`,m(θ, φ)− a−`,me
−ω`σY`,m(θ, φ)

∗]
such that

−
∫
S2

(∂σχ)
2 =

∑
`,m

ω`

2

[
−(−1)ma+`,ma

+
`,−me

2ω`σ − (−1)ma−`,ma
−
`,−me

−2ω`σ + a+`,ma
−
`,m + a−`,ma

+
`,m

]
.

To obtain this, we have used the orthogonality condition from the exercise. For the
second part, we have instead(

−�S2 +
1

4
(d− 2)2

)
χ =

∞∑
`=0

∑̀
m=−`

ω
3/2
`√
2

[
a+`,me

ω`σY`,m(θ, φ) + a−`,me
−ω`σY`,m(θ, φ)

∗]
so∫
S2

χ

(
−�S2 +

1

4
(d− 2)2

)
χ =

∑
`,m

ω`

2

[
(−1)ma+`,ma

+
`,−me

2ω`σ + (−1)ma−`,ma
−
`,−me

−2ω`σ + a+`,ma
−
`,m + a−`,ma

+
`,m

]
.

Adding both contributions, we see that the a+a+ and a−a− terms cancel, but the
a+a− and a−a+ terms survive, and

H =
∑
`,m

ω`

2

[
a+`,ma

−
`,m + a−`,ma

+
`,m

]
.

In particular, we point to the fact that H does not depend on the time coordinate
σ.
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(d) Computation of the Commutator [χ, ∂σχ]

Since we have explicit expressions for χ and ∂σχ, let us compute the commutator
explicitly:

[χ, ∂σχ] =
1

2

∑
`,m

∑
`′,m′

√
ω`′

ω`

[
[a+`,m, a

+
`′,m′ ]e

(ω`+ω`′ )σY`,mY`′,m′

−[a+`,m, a
−
`′,m′ ]e

(ω`−ω`′ )σY`,mY
∗
`′,m′ + [a−`,m, a

+
`′,m′ ]e

(−ω`+ω`′ )σY ∗
`,mY`′,m′

−[a−`,m, a
−
`′,m′ ]e

−(ω`+ω`′ )σY ∗
`,mY

∗
`′,m′

]
.

Since this must equal (14) from the exercise, we see in particular that the RHS
cannot depend on σ. So we must have [a+`,m, a

+
`′,m′ ] = 0, and by taking the hermitian

conjugate of that also [a−`,m, a
−
`′,m′ ] = 0. Looking at the second and third terms, we

see that in addition we must have

[a+`,m, a
−
`′,m′ ] ∝ δ`,`′ .

Using this, we rewrite the above equation as

[χ, ∂σχ] =
∑

`,m,m′

[a−`,m′ , a
+
`,m]Y`,m(θ, φ)Y`,m′(θ, φ)∗.

After relabeling the dummy indices m,m′ in one of the terms and using the property
that [A,B] = −[B,A], we get

[χ, ∂σχ] =
∑
`,m

c(`,m)Y`,m(θ, φ)Y`,m(θ, φ)
∗,

where c(`,m) are some constants. Using the orthogonality relation for spherical
harmonics, ∑̀

m=−`

Y`,m(θ, φ)Y`,m(θ, φ)
∗ = 1,

we find that
[χ, ∂σχ] =

∑
`

c(`,m).

Matching this with the result from the exercise (equation 14), we conclude that
c(`,m) = 1 for all `,m, so

[a−`,m, a
+
`′,m′ ] = δ`,`′δm,m′ .

(e) Hamiltonian H in Normal-Ordered Form
Returning to our expression for the Hamiltonian H, we get

H =
∑
`,m

ω`

2

(
a+`,ma

−
`,m + [a−`,m, a

+
`,m] + a−`,ma

+
`,m

)
.

Since [a−`,m, a
+
`,m] = 1, we have

H =
∑
`,m

ω`a
+
`,ma

−
`,m + E0,
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where

E0 =
∑
`,m

ω`

2
=

∞∑
`=0

(`+
1

2
)2 = ∞.

The term E0 is a divergent constant that we subtract from H. This subtraction is
equivalent to normal-ordering H.
The Hamiltonian H becomes an infinite sum of harmonic oscillators, each associated
with a creation operator a+`,m and an annihilation operator a−`,m. To define our
Hilbert space, we start with a vacuum state |Ω〉 that obeys

∀`,m : a−`,m|Ω〉 = 0.

We build excited states by acting with the creation operators a+`,m. For instance,
the state |`,m〉 = a+`,m|Ω〉 has energy

H|`,m〉 = [H, a+`,m]|Ω〉+ a+`,mH|Ω〉 = ω`|`,m〉.

A complete basis of states in the theory is given by

|Ψ〉 =
∞∏
`=0

∏̀
m=−`

(a+`,m)
n`,m|Ω〉,

where n`,m ∈ N. The state |Ψ〉 has energy

H|Ψ〉 = E(Ψ)|Ψ〉, E(Ψ) = n0,0ω0 +
1∑

m=−1

n1,mω1 + . . .+
∑̀
m=−`

n`,mω` + . . .

or equivalently

E(Ψ) =
∞∑
`=0

n`(`+
1

2
), n` =

∑̀
m=−`

n`,m.

(f) Matching with Flat-Space Theory
In the flat-space theory, the free scalar φ(x) has dimension ∆φ = d−2

2
= 1

2
, setting

d → 3. Its descendants
∂µ1 · · · ∂µnφ(x)

have dimension ∆ = ∆φ + n = n + 1
2
. These scaling dimensions match the one-

particle states
|`,m〉 = a+`,m|Ω〉, E = `+

1

2
,

if we set ` = n. The number of states with energy n + 1
2

also agrees. For n = 1,
there are three descendants ∂µφ, and at the same time, there are three states with
energy 3

2
, namely |1,−1〉, |1, 0〉, |1, 1〉. At the next level n = 2, there are 5 different

descendants: there are 1
2
d(d+ 1) = 6 operators of the form ∂µ∂νφ, but

�φ =
3∑

µ=1

∂2
µφ = 0,
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so the number of independent operators is only 6 − 1 = 5. Similarly, there are
2`+1 = 5 states of the form |2,m〉, with m = −2, . . . , 2. This reasoning continues for
higher levels. We can also consider operators with multiple fields, such as O =: φ2 :
with dimension ∆O = 2∆φ = 1. This operator corresponds to a two-particle state
(a+0,0)

2|Ω〉 with energy 2ω0 = 1. Using similar logic, we can match a general operator
of the schematic form

O =: ∂j1φ ∂j2φ · · · ∂jnφ :

with scaling dimension ∆O = n
2
+ j1+ j2+ · · ·+ jn to an n-particle state with energy

E = ∆O.

(g) Computation of the Integral F (r)

We are instructed to compute the integral

F (r) =

∫
Sd−1

dΩ rd−1xµrjµ(x) = −
∫
Sd−1

dΩ rd−2xµxνTµν(x)

with
Tµν = ∂µφ∂νφ− 1

2
gµν(∂ρφ)

2 + ξ(gµν�− ∂µ∂ν)φ
2.

Let us work in flat space, with coordinates {τ, nµ} defined by xµ = eτnµ. In partic-
ular,

xµ∂µf(x) = ∂τf(τ, n), xµxν∂µ∂ν = ∂2
τ − ∂τ .

Therefore,

xµxνTµν =
1

2
(∂τφ)

2 − 1

2
hij∂iφ∂jφ+ ξ

[
e2τ�− ∂2

τ + ∂τ
]
φ2,

where we use that
ds2 = e2τ

[
dτ 2 + hijdθ

idθj
]
.

Now let us perform the field redefinition φ(τ, n) = e−
1
2
(d−2)τχ(τ, n) as before. More-

over, from (53) it follows that

e2τ� = �Sd−1 + ∂2
τ + (d− 2)∂τ

when acting on scalar functions. The first term in xµxνTµν transforms as

e(d−2)τ 1

2
(∂τφ)

2 =
1

2
(∂τχ)

2 +
1

2

(
d− 2

2

)2

χ2 − d− 2

4
∂τ (χ

2),

whereas the last term gives

e(d−2)τ
(
e2τ�− ∂2

τ + ∂τ
)
φ2 = [−(d− 1)(d− 2) + (d− 1)∂τ +�Sd−1 ]χ2.

If ξ = ξc, the full stress tensor simplifies to

ξ = ξc : −e(d−2)τxµxνTµν = −1

2
(∂τχ)

2 +
1

2
χ(−�Sd−1χ) +

1

2

(
d− 2

2

)2

χ2,

neglecting a boundary term ∇i(. . .) that vanishes once integrated over the sphere.
This expression matches the Hamiltonian density that we started with.
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If ξ 6= ξc, there is an additional term:

−e(d−2)τxµxνTµν ⊃ (ξ − ξc)[(d− 1)(d− 2)− (d− 1)∂τ −�Sd−1 ]χ2.

This contributes to H, although the term vanishes after integration over Sd−1. The
remaining terms contribute as a mass term and an interaction term χ∂τχ ∼ χΠ.

2. Unitarity bounds

(a) Let us illustrate the solution with the scalar. As you’ve seen in the lecture.

〈O|KµPν |O〉 = 2∆δµν〈O|O〉 = 2∆δµν . (1)

Thus, the norm of the state |z〉 = zµP
µ|O〉 is 〈z|z〉 = 2∆|z|2. Since this must be

positive, we conclude that ∆ ≥ 0, with ∆ = 0 only possible when Pµ|O〉 = 0. This
represents a state without descendants, meaning that [Pµ, O(x)] = i∂µO(x) = 0, so
O(x) does not depend on its position xµ. Thus, O(x) must be a constant operator.
In fact, this implies that O(x) is the identity operator, corresponding to the vacuum
state (which transforms as a scalar primary with ∆ = 0).

(b) For tensor fields (point (a) and (c) of the exercise set), let us define

|Aµ[k]〉 := |A〉µσ1...σ`−1
kσ1...σ`−1 , |k〉 := Pµ|Aµ[k]〉, (2)

where kσ1...σ`−1 can be assumed to be completely symmetric and traceless. We seek
the consequences of 〈k|k〉 ≥ 0. Hence, we compute using the conformal algebra

0 ≤ 〈k|k〉 = 〈Aµ[k]|KµP ν |Aν [k]〉 = 2∆〈Aµ[k]|Aµ[k]〉 − 2i〈Aµ[k]|Mµν |Aν [k]〉. (3)

Next, we compute using the explicit definition of Mµν that

Mµν |Aν [k]〉 = −i(`+ d− 2)|Aµ[k]〉. (4)

Hence,

0 ≤ 〈k|k〉 = 2 [∆− `− d+ 2] 〈Aµ[k]|Aµ[k]〉. (5)

Since 〈Aµ[k]|Aµ[k]〉 ≥ 0, we conclude that ∆ ≥ `+d−2, which is the desired bound.
If the norm of |k〉 vanishes, then Pµ|Aµσ1...σ`−1

〉 = 0. Repeating the previous argu-
ment, we conclude that

∂µA
µσ1...σ`−1(x) = 0, (6)

meaning that A is conserved. Indeed, we already saw that a Noether current has
dimension d − 1 and the stress tensor has dimension d; here we have proven the
converse.
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(c) Commuting Ĉ with Generators
The check that Ĉ commutes with all generators is done in Mathematica. To evaluate
it in a primary state |Aµ1...µ`

〉 of dimension ∆ and spin `, we note that

KµP
µ = PµK

µ + 2dD, (7)

since δµνMµν = 0 (as Mµν is antisymmetric). Thus,

Ĉ|primary〉 =
[
D2 − dD + CSO(d)

]
|primary〉. (8)

In particular, if the primary has spin ` and dimension ∆, we find that

Ĉ|Aµ1...µ`
〉 = [∆(∆− d) + `(`+ d− 2)] |Aµ1...µ`

〉. (9)

Note: If desired, you can show that 〈Aµ[k]|Aµ[k]〉 = c`,dk
∗
µ1...µ`−1

kµ1...µ`−1 for some
positive coefficient c`,d > 0 with a group-theoretical interpretation.
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