Conformal Field Theory and Gravity

Solutions to Problem Set 8 Fall 2024

1. Radial Quantization of the Free Scalar

(a) Let’s introduce some notation. Let
ds%a—y = hi;(0%)d0'do”
be the metric of the unit sphere S%~!. For instance, in d = 2,3 we have
dsi = d¢*, dsge = df* + sin®(0)d¢”.

The corresponding volume element is v/A [1; d6" = dQ, to connect with the notation
from the exercise. The metric in radial coordinates (r, #°) resp. cylinder coordinates
(0,0%) coordinates reads

ds® = dr® + r’dsge, = €7 [do® + dsga |

since dr = d(e”) = e’do. In particular, in the (o,60") coordinates we have /g =
exp(do)v/h so the volume element is % dod(Q.

After throwing away a boundary term, the action is given by

Sié = [ d'y(-000), O=0,0"

working in Cartesian coordinates z*. In a general coordinate system, the Laplacian
acting on a general function f is instead
1

Of \/gau

(V99" 0 f)

Evaluating the Laplacian in cylinder coordinates (o,6") and plugging it into the
above relation will yield the correct answer. Nevertheless, we will use a different
strategy. The Euclidean action can be rewritten in a purely covariant form as

1 1
Se= [ des @07 = [ de/ig0,00,0
We can now just use our change of variables as

. }
Sp=13 / do / N0V R 27 [(0,0)7 + 1 9:00;0]

. )
=3 / dodQe' =7 [(9,0)% + 1 0,00;9)
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(d—2)o) x. With

According to the exercise, we should define a field ¢ = exp (—%

this definition, we have

2—d _a- -
0y = e’%"x + e~ 50 X

Plugging that into the action and neglecting total derivatives yields the answer from
the exercise.

Using the other strategy, we obtain

0*  (d-2\"
_eda¢D¢ =xDx, D= —m + (T) — Uga-1.
g

Therefore

S[g] = % / dod

d—2\2
(95x)* — XOga-1x + (T) X2] :

If we write —yga-1x = 9;x¥0"x, we recover the result from the exercise.

Solutions of the Equation Dy =0

Suppose that Y (6?) is an eigenfunction of the Laplacian (Jga—1 in d dimensions, with
eigenvalue —v. If we take the Ansatz

X(0,0") = 7Y (9"),

2 d—2\° d—2\°
—w” + 5 +Y| X = w=1¢/7+ 5 )

If you have studied the theory of spherical harmonics, you may know that in d
dimensions, the spherical harmonics of S~ have eigenvalues v = £(¢ + d — 2), so
the possible values of w are

d—2\" d—2

In particular, for d = 3 the allowed energies are +wy = +( + 1).

then

Dy =

From now on, let us fix d = 3. The most general solution is a sum of all solutions
of the form (22), namely

oo l
X(0,0,0) =D (b, + by,e ™) You(0, 9),
(=0 m=—¢

where bi,'fm are some operators acting on Hilbert space. The reality condition —
using Y, = (=1)"Y, ,, — is

X(0,6") = x(=0,6")1 =Y (=1)" [(bf,) ™" + (b)) Yo (6, 6)

lm



=D (D)™ ) e + (1) (0 ) e ] Yen (6, 0)

lm

(relabeling m — —m in passing from the first to the second line), so by imposing
that this agrees with (25) for all o and 6, ¢, we learn that

by = (=)™ (b, )"
It is more natural to redefine the modes as
aZm =/ 2wgbzm, g = V2w (=1)"b, _,,

such that

aZm = (azm)T.

This also leads to a more standard expression for the field y, namely

oo V4
1
X(0,0,8) =Y > —— [0, Yo (0, ) + g€ Yo (0, ¢)"]
(=0 m=—/ 20Jg

which is now manifestly hermitian.

Computation of the Hamiltonian H

We are left to compute H, by integrating

H= %/52 dQ {—(&,X)z + X <—D52 + }l(d— 2)2) X} :

For the first term, notice that

00 V4
0 =3 30 /0 Ven(0.0) — Vi (6,0)'
=0 m=—4

such that

Wy - _ _ _
- /5‘2 (aJX)Q = Z E [_(_1)ma'2:mazfm€2w£a - (_1)maf,ma€,fme 2o + aZmaZ,m + aﬂ,maZm} :

£m

To obtain this, we have used the orthogonality condition from the exercise. For the
second part, we have instead

1 w
<—DSQ + 4 (d - 2)2) X=> > % [af €Y om (0, 0) + ag,,e 7Yy (0, 0)"]
SO
1 2 m + + 2wypo m,_— — —2wypo + —
g2 X _DS2 + Z(d - 2) X = Z ? [(_1) a’ﬁ,maf,fme + (_1) aé,maé,fme + af,maf,m +
lm

Adding both contributions, we see that the ata™ and a~a~ terms cancel, but the
ata” and a”a’ terms survive, and

§ :wf + - - o+
H = ? [af,maf,m + a[,maf,m} .
Lm

In particular, we point to the fact that H does not depend on the time coordinate
0.



(d)

Computation of the Commutator [, d,x]
Since we have explicit expressions for y and 0,Y, let us compute the commutator
explicitly:

(,dg/

[0 s @ )€Y Y

é m Z’
—[af, az,mf]e(‘”_“f’)aye,mmmf s O ] TN Y
(- — —(wetwyr oy * *
[a’&m’ aﬁ’,m’]e ¢ Yv@,vaZ/,m/} :

Since this must equal (14) from the exercise, we see in particular that the RHS
cannot depend on ¢. So we must have [a;,, a; .| = 0, and by taking the hermitian

conjugate of that also [ay,,, 4y ., = 0. Lookmg at the second and third terms, we

see that in addition we must have
+ —
[ae,mv aef,m/] o Og,pr-

Using this, we rewrite the above equation as

G 0eX) = D (g af ] Yem (0, ) Yo (6, 6)".

Lmm/’

After relabeling the dummy indices m, m’ in one of the terms and using the property
that [A, B] = —[B, A], we get

= Z C(g, m)Yg,m(@, (b)}/f,m(e? (b)*v
m

where ¢(¢,m) are some constants. Using the orthogonality relation for spherical
harmonics,

4
> Yom(0,0)Yem(0,0) =1,

m=—/
we find that

0] = S eltom).

14

Matching this with the result from the exercise (equation 14), we conclude that
c(l,m) =1 for all £, m, so

- o
(@ > Q] = Ot O

Hamiltonian H in Normal-Ordered Form

Returning to our expression for the Hamiltonian H, we get

H = Z aé maé m [af_,mﬂ aZm] + a’é_,maZm) :

: - o+ 1
Since [a,,, a/,,] = 1, we have

_ § : + -
H — Wga&ma&m + E07

lm



where

E0:Z%:;(€+%)2:oo.
lm =0

The term Ej is a divergent constant that we subtract from H. This subtraction is
equivalent to normal-ordering H.

The Hamiltonian H becomes an infinite sum of harmonic oscillators, each associated
with a creation operator a;, and an annihilation operator a,, . To define our
Hilbert space, we start with a vacuum state |2) that obeys

Ve, m:a,,,|Q) =0.

+

om- For instance,

We build excited states by acting with the creation operators a
the state |¢,m) = a/ |Q) has energy

H|¢,m) = [H, azm]|Q> +aZmH|Q> = wy|l, m).

A complete basis of states in the theory is given by

00 l
W) =TT IT @019,

=0 m=—¢

where ny,, € N. The state |¥) has energy

1
H|U) = E(D)|T), E(T)=noowo+ Y Mimwi+...+ > Ngmwr+ ...

m=—1 m=—

or equivalently

00 )4
1
E(\I/) = E 7’Lg(€+ 5), Ny = E e m-
=0

m=—/

Matching with Flat-Space Theory

In the flat-space theory, the free scalar ¢(x) has dimension Ay = 42 = %, setting

2
d — 3. Its descendants
am e .aﬂn¢(x)

have dimension A = Ay +n =n + % These scaling dimensions match the one-

particle states
1

|6, m) = aZm|Q>, E=1/0+ 3
if we set £ = n. The number of states with energy n + % also agrees. For n = 1,
there are three descendants d,¢, and at the same time, there are three states with
energy %, namely |1, —1),|1,0),|1,1). At the next level n = 2, there are 5 different

descendants: there are $d(d 4 1) = 6 operators of the form 8,0,¢, but

3
0o =) 0np =0,

p=1



so the number of independent operators is only 6 — 1 = 5. Similarly, there are
20+1 = 5 states of the form |2, m), with m = —2,...,2. This reasoning continues for
higher levels. We can also consider operators with multiple fields, such as O =: ¢? :
with dimension Ap = 2A, = 1. This operator corresponds to a two-particle state
(ag)?|Q2) with energy 2wy = 1. Using similar logic, we can match a general operator
of the schematic form

O0=0"¢p5¢ - ¢:

with scaling dimension Ap = § +j1 +ja+ - -+ jn to an n-particle state with energy
E = Ap.

Computation of the Integral F(r)

We are instructed to compute the integral

F(r) :/ dQr*atrg,(z) = _/ dQrt e T, ()
Sd—1 Sd-1

with
;w - u¢au¢ g;w( p(b) + g(g,uVD - aual/>¢2'

Let us work in flat space, with coordinates {7, n*} defined by x* = e"n*. In partic-
ular,

w0, f (x) = 0. f(r,n), at2"9,0, = 02 — O,.
Therefore,
1 1. ..
T, = 5(@@5)2 — 51"0:00;0 + ¢ [¥"0— 02 + 0] ¢,

where we use that

ds® = ¢ [dr?® + hyd6'do’] .

Now let us perform the field redefinition ¢(r,n) = e~2@27x (7, n) as before. More-
over, from (53) it follows that

>0 = Oga1 + 02 + (d — 2)0,

when acting on scalar functions. The first term in x#2"7),, transforms as

d—2 d—2
o o.or = Moo+ (457) - 2000,
whereas the last term gives
(O =92+ 0,) ¢* = [—(d — 1)(d — 2) + (d — 1)0 + Oga]x?

If £ =&, the full stress tensor simplifies to

1 1 d—2
§=&: AT = —5(0:0° + 5x(-0sex) + 5 (T) X,

neglecting a boundary term V,(...) that vanishes once integrated over the sphere.
This expression matches the Hamiltonian density that we started with.

6



If £ # &, there is an additional term:

_e(d_Q)TxMxVTMV 0 (5 - gc)[(d - 1)(d - 2) - (d - 1)87 - DSd*l]XQ'

This contributes to H, although the term vanishes after integration over S~'. The
remaining terms contribute as a mass term and an interaction term y0,x ~ xII.

2. Unitarity bounds

(a)

Let us illustrate the solution with the scalar. As you’ve seen in the lecture.

(O|K,P,|O) = 2A8,,{0|0) = 2A6,,,. (1)

Thus, the norm of the state |2) = z,P*|O) is (z|z) = 2A|z|?. Since this must be
positive, we conclude that A > 0, with A = 0 only possible when P,|O) = 0. This
represents a state without descendants, meaning that [P,, O(x)] = i0,0(x) = 0, so
O(z) does not depend on its position z#. Thus, O(z) must be a constant operator.
In fact, this implies that O(x) is the identity operator, corresponding to the vacuum
state (which transforms as a scalar primary with A = 0).

For tensor fields (point (a) and (c) of the exercise set), let us define

[AulK]) = [ A por o K77 |R) = Bu| AMR]), (2)

where £719¢-1 can be assumed to be completely symmetric and traceless. We seek
the consequences of (k|k) > 0. Hence, we compute using the conformal algebra

0 < (klk) = (Au[K]| K" PY[Ay[K]) = 28(ALK]|AM[R]) — 20(AL[R]| M™]A[R]). - (3)

Next, we compute using the explicit definition of M, that

M*[A,[K]) = —i(f + d = 2)[ AL [K]). (4)

Hence,

0 < (klk) = 2[A = £ — d + 2] (A, [K]|A"[K]). (5)

Since (A, [k]|A*[k]) > 0, we conclude that A > ¢4d—2, which is the desired bound.

If the norm of |k) vanishes, then P,|A,, 5, ,) = 0. Repeating the previous argu-
ment, we conclude that

8, AlT1-t-1 () = 0, (6)

meaning that A is conserved. Indeed, we already saw that a Noether current has
dimension d — 1 and the stress tensor has dimension d; here we have proven the
converse.



(¢) Commuting C' with Generators

The check that C' commutes with all generators is done in Mathematica. To evaluate
it in a primary state |A,, ,,) of dimension A and spin ¢, we note that

K,P" = P,K" +2dD, (7)

since 0" M, = 0 (as M, is antisymmetric). Thus,

C|primary) = [D? — dD + Cso(g)] |primary). (8)

In particular, if the primary has spin ¢ and dimension A, we find that

ClAurne) = [AA = d) + €+ d = 2)] [ Ay ) (9)

Note: If desired, you can show that (A, [K]|A*[k]) = cak}, kta-te=1 for some

11
positive coefficient ¢, 4 > 0 with a group-theoretical interpretation.



